Development of Two-Step Temperature Process to Modulate the Physicochemical Properties of β-lactoglobulin Nanoparticles

نویسندگان

  • Ho-Kyung Ha
  • Gyeong-Won Nam
  • Dongwoo Khang
  • Sung Jean Park
  • Mee-Ryung Lee
  • Won-Jae Lee
چکیده

The development of a new manufacturing process, a two-step temperature treatment, to modulate the physicochemical properties of nanoparticles including the size is critical. This is because its physicochemical properties can be key factors affecting the cellular uptake and the bioavailability of bioactive compounds encapsulated in nanoparticles. The aims of this study were to produce (beta-lactoglobulin) β-lg nanoparticles and to understand how two-step temperature treatment could affect the formation and physicochemical properties of β-lg nanoparticles. The morphological and physicochemical properties of β-lg nanoparticles were determined using atomic force microscopy and a particle size analyzer, respectively. Circular dichroism spectroscopy was used to investigate the secondary structure of β-lg. The surface hydrophobicity and free thiol groups of β-lg were increased with a decrease in sub-ambient temperature and an increase in mild heat temperature. As sub-ambient temperature was decreased, a decrease in α-helical content and an increase in β-sheet content were observed. The two-step temperature treatment firstly involved a sub-ambient temperature treatment from 5 to 20°C for 30 min, followed secondly by a mild heat temperature treatment from 55 to 75°C for 10 min. This resulted in the production of spherically-shaped particles with a size ranging from 61 to 214 nm. Two-way ANOVA exhibited the finding that both sub-ambient and mild heat temperature significantly (p<0.0001) affected the size of nanoparticles. Zeta-potential values of β-lg nanoparticles were reduced with increasing mild heat temperature. In conclusion, two-step temperature treatment was shown to play an important role in the manufacturing process - both due to its inducement of the conformational changes of β-lg during nanoparticle formation, and due to its modulation of the physicochemical properties of β-lg nanoparticles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cellular Uptake and Cytotoxicity of β-Lactoglobulin Nanoparticles: The Effects of Particle Size and Surface Charge

It is necessary to understand the cellular uptake and cytotoxicity of food-grade delivery systems, such as β-lactoglobulin (β-lg) nanoparticles, for the application of bioactive compounds to functional foods. The objectives of this study were to investigate the relationships between the physicochemical properties of β-lg nanoparticles, such as particle size and zeta-potential value, and their c...

متن کامل

Fabrication and evaluation of gelatin nanoparticles for delivering of anti - cancer drug

The aim of present study was to prepare gelatin nanoparticle for drug and gene delivery applications. These nanoparticles were prepared by two-step desolvation method. The body distribution of colloidal drug delivery systems was mainly influenced by two physicochemical properties namely particle size and surface characteristics. The influence of several factors on the fabrication process includ...

متن کامل

Mathematical Analysis of Drug Release for Gastrointestinal Targeted Delivery Using β-Lactoglobulin Nanoparticle

To answer challenge of targeted and controlled drug release in oral delivery various materials were studied by different methods. In the present paper, controlled metal based drug (Pd(II) complex) release manner of β‑Lactoglobulin (β-LG) nanoparticles was investigated using mathematical drug release model in order to design and production of a new oral drug delivery system for gastrointestinal ...

متن کامل

Preparation and Antibacterial Activity Evaluation of 18-β-glycyrrhetinic Acid Loaded PLGA Nanoparticles

AbstractThe aim of the present study was to formulate poly (lactide-co-glycolide) (PLGA) nanoparticles loaded with 18-β-glycyrrhetinic acid (GLA) with appropriate physicochemical properties and antimicrobial activity. GLA loaded PLGA nanoparticles were prepared with different drug to polymer ratios, acetone contents and sonication times and the antibacterial activity of the developed nanopartic...

متن کامل

Effect of Processing Parameters on Physicochemical Properties of β-Carotene Nanocrystal: A Statistical Experimental Design Analysis

Incorporation of functional foods and nutraceuticals such as carotenoids which suffer from poor water solubility and low bioavailability into nano-sized delivery systems can improve their solubility, stability and oral bioavailability. The aim of this study was to prepare β-Carotene nanodispersion and investigate the effects of preparation parameters by means of response surface methodology usi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 37  شماره 

صفحات  -

تاریخ انتشار 2017